Was Superlegierungen super macht - Hierarchische Mikrostruktur in einer Superlegierung
s Superlegierungen super macht - Hierarchische Mikrostruktur in einer Superlegierung
In Hochleistungsturbinen müssen Materialien nicht nur gewaltigen mechanischen Kräften standhalten, sondern auch noch bis nahe an den Schmelzpunkt stabil bleiben. Daher verwenden Turbinenbauer seit Jahrzehnten spezielle Hochleistungslegierungen auf Basis von Nickel. Eine neue Arbeit aus dem HZB zeigt nun im Detail, wie sich in einer Nickel-Basis-Legierung neue Phasen bilden und verändern und gibt Hinweise darauf, wie sich Hochleistungslegierungen weiter verbessern lassen könnten. Doktorand Florian Vogel und Dr. Nelia Wanderka vom HZB-Institut für Angewandte Materialforschung haben dafür zwei Methoden geschickt kombiniert: Die Transmissionselektronenmikroskopie und die Atomsondentomografie, die sie in Zusammenarbeit mit Kollegen der Universität Münster durchgeführt haben.
Insbesondere interessierten sich die beiden Forscher für das Phänomen der Phasenseparation, das schon seit rund 50 Jahren bekannt ist, bislang aber weder genau beobachtet noch verstanden werden konnte. Denn bei gezielter Alterung oder Wärmebehandlung verändert sich die Mikrostruktur von Nickel-Basis-Legierungen, und in der klassischen zweiphasigen Mikrostruktur bilden sich neue Phasen. Wanderka und Vogel konnten nun diesen Prozess erstmals auf atomarer Ebene beobachten.
Dabei simulierten sie durch verschieden lange Wärmebehandlungen den Alterungsprozess der Legierung. Mit Aufnahmen unter dem Transmissionselektronenmikroskop dokumentierten sie, wie sich die Mikrostruktur bei der "Alterung" der Legierung verändert. Dabei besteht die klassische Mikrostruktur von Nickel-Basis-Legierungen aus einer sogenannten ?-Matrix, in die würfelförmige Ausscheidungen (?´-Ausscheidungen) eingebettet sind. In diesen Ausscheidungen bilden sich durch die Wärmebehandlung sphärische ?-Partikel, die sich im weiteren Verlauf zu Plättchen zusammenschließen und letztlich die ?´-Ausscheidungen aufspalten. Die thermo-mechanischen Eigenschaften derartiger Legierungen hängen maßgeblich von der Stabilität dieser ?/?´-Mikrostruktur ab.
Um zu ermitteln, welche atomare Zusammensetzung die einzelnen Phasen besitzen und die Entstehung und Identität der noch unbekannten ?-Partikel zu enthüllen, untersuchten Vogel und Wanderka die gealterten Proben mit der Atomsondentomografie an der Universität Münster: Damit konnten sie den atomaren Aufbau der Proben Schicht für Schicht rekonstruieren und die Zusammensetzung aller Phasen bestimmen, sodass sie die chemische Evolution der ?-Partikel aufklären konnten.
"Bisher ging man davon aus, dass die Aufspaltung der ?´-Ausscheidungen unter Temperatureinfluss die Mikrostruktur verfeinert, was für die Belastbarkeit der Legierung von Vorteil wäre. Wir konnten nun zeigen, dass das nicht richtig ist: Zwar verändert sich die Mikrostruktur deutlich, jedoch wird sie durch die Aufspaltung nicht verfeinert. Tatsächlich können wir die besten mechanischen Eigenschaften mit der Anwesenheit sphärischer oder plättchenförmiger ?-Partikel verknüpfen und nicht mit den späteren Stadien, wenn die Aufspaltung der ?´-Ausscheidungen stattgefunden hat", erklärt Florian Vogel. Und Nelia Wanderka fügt hinzu: "Wenn wir die Stabilität der Mikrostruktur und damit die thermo-mechanischen Eigenschaften der Legierung verbessern wollen, müssen wir also durch geeignetes Legierungsdesign und Wärmebehandlungen dafür sorgen, dass die ?´-Ausscheidungen nicht von den ?-Partikeln aufgespalten werden, sondern sie darin erhalten bleiben. Die Atomsondentomografie hilft uns dabei, zu verstehen, welche Rolle die Legierungselemente bei Bildung und Wachstum der ?-Partikel spielen. Daraus können wir lernen, wie sich diese Prozesse beeinflussen lassen."
Die Arbeit ist am 20.12.2013 in den renommierten Nature Communications veröffentlicht worden (s. Link).
Weitere Informationen:
Dr. Nelia Wanderka
Institut für Angewandte Materialforschung
Tel.: +49 (0)30-8062-42079
wanderka@helmholtz-berlin.de
Florian Vogel
Institut für Angewandte Materialforschung
Tel.: +49 (0)30-8062-43217
florian.vogel@helmholtz-berlin.de
Pressestelle
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger@helmholtz-berlin.de
(pressrelations) - gen super macht - Hierarchische Mikrostruktur in einer Superlegierung
In Hochleistungsturbinen müssen Materialien nicht nur gewaltigen mechanischen Kräften standhalten, sondern auch noch bis nahe an den Schmelzpunkt stabil bleiben. Daher verwenden Turbinenbauer seit Jahrzehnten spezielle Hochleistungslegierungen auf Basis von Nickel. Eine neue Arbeit aus dem HZB zeigt nun im Detail, wie sich in einer Nickel-Basis-Legierung neue Phasen bilden und verändern und gibt Hinweise darauf, wie sich Hochleistungslegierungen weiter verbessern lassen könnten. Doktorand Florian Vogel und Dr. Nelia Wanderka vom HZB-Institut für Angewandte Materialforschung haben dafür zwei Methoden geschickt kombiniert: Die Transmissionselektronenmikroskopie und die Atomsondentomografie, die sie in Zusammenarbeit mit Kollegen der Universität Münster durchgeführt haben.
Insbesondere interessierten sich die beiden Forscher für das Phänomen der Phasenseparation, das schon seit rund 50 Jahren bekannt ist, bislang aber weder genau beobachtet noch verstanden werden konnte. Denn bei gezielter Alterung oder Wärmebehandlung verändert sich die Mikrostruktur von Nickel-Basis-Legierungen, und in der klassischen zweiphasigen Mikrostruktur bilden sich neue Phasen. Wanderka und Vogel konnten nun diesen Prozess erstmals auf atomarer Ebene beobachten.
Dabei simulierten sie durch verschieden lange Wärmebehandlungen den Alterungsprozess der Legierung. Mit Aufnahmen unter dem Transmissionselektronenmikroskop dokumentierten sie, wie sich die Mikrostruktur bei der "Alterung" der Legierung verändert. Dabei besteht die klassische Mikrostruktur von Nickel-Basis-Legierungen aus einer sogenannten ?-Matrix, in die würfelförmige Ausscheidungen (?´-Ausscheidungen) eingebettet sind. In diesen Ausscheidungen bilden sich durch die Wärmebehandlung sphärische ?-Partikel, die sich im weiteren Verlauf zu Plättchen zusammenschließen und letztlich die ?´-Ausscheidungen aufspalten. Die thermo-mechanischen Eigenschaften derartiger Legierungen hängen maßgeblich von der Stabilität dieser ?/?´-Mikrostruktur ab.
Um zu ermitteln, welche atomare Zusammensetzung die einzelnen Phasen besitzen und die Entstehung und Identität der noch unbekannten ?-Partikel zu enthüllen, untersuchten Vogel und Wanderka die gealterten Proben mit der Atomsondentomografie an der Universität Münster: Damit konnten sie den atomaren Aufbau der Proben Schicht für Schicht rekonstruieren und die Zusammensetzung aller Phasen bestimmen, sodass sie die chemische Evolution der ?-Partikel aufklären konnten.
"Bisher ging man davon aus, dass die Aufspaltung der ?´-Ausscheidungen unter Temperatureinfluss die Mikrostruktur verfeinert, was für die Belastbarkeit der Legierung von Vorteil wäre. Wir konnten nun zeigen, dass das nicht richtig ist: Zwar verändert sich die Mikrostruktur deutlich, jedoch wird sie durch die Aufspaltung nicht verfeinert. Tatsächlich können wir die besten mechanischen Eigenschaften mit der Anwesenheit sphärischer oder plättchenförmiger ?-Partikel verknüpfen und nicht mit den späteren Stadien, wenn die Aufspaltung der ?´-Ausscheidungen stattgefunden hat", erklärt Florian Vogel. Und Nelia Wanderka fügt hinzu: "Wenn wir die Stabilität der Mikrostruktur und damit die thermo-mechanischen Eigenschaften der Legierung verbessern wollen, müssen wir also durch geeignetes Legierungsdesign und Wärmebehandlungen dafür sorgen, dass die ?´-Ausscheidungen nicht von den ?-Partikeln aufgespalten werden, sondern sie darin erhalten bleiben. Die Atomsondentomografie hilft uns dabei, zu verstehen, welche Rolle die Legierungselemente bei Bildung und Wachstum der ?-Partikel spielen. Daraus können wir lernen, wie sich diese Prozesse beeinflussen lassen."
Die Arbeit ist am 20.12.2013 in den renommierten Nature Communications veröffentlicht worden (s. Link).
Weitere Informationen:
Dr. Nelia Wanderka
Institut für Angewandte Materialforschung
Tel.: +49 (0)30-8062-42079
wanderka(at)helmholtz-berlin.de
Florian Vogel
Institut für Angewandte Materialforschung
Tel.: +49 (0)30-8062-43217
florian.vogel(at)helmholtz-berlin.de
Pressestelle
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger(at)helmholtz-berlin.de
Unternehmensinformation / Kurzprofil:PresseKontakt / Agentur:Dr. Nelia Wanderka
Institut für Angewandte Materialforschung
Tel.: +49 (0)30-8062-42079
wanderka(at)helmholtz-berlin.de
Florian Vogel
Institut für Angewandte Materialforschung
Tel.: +49 (0)30-8062-43217
florian.vogel(at)helmholtz-berlin.de
Pressestelle
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger(at)helmholtz-berlin.de
Bereitgestellt von Benutzer: pressrelations
Datum: 16.12.2014 - 12:15 Uhr
Sprache: Deutsch
News-ID 1150504
Anzahl Zeichen: 9419
pressrelations.de – ihr Partner für die Veröffentlichung von Pressemitteilungen und Presseterminen, Medienbeobachtung und MedienresonanzanalysenDiese Pressemitteilung wurde bisher
0 mal aufgerufen.
Die Pressemitteilung mit dem Titel:
"
Was Superlegierungen super macht - Hierarchische Mikrostruktur in einer Superlegierung"
steht unter der journalistisch-redaktionellen Verantwortung von
Helmholtz-Zentrum Berlin (HZB) (
Nachricht senden)
Beachten Sie bitte die weiteren Informationen zum
Haftungsauschluß (gemäß
TMG - TeleMedianGesetz) und dem
Datenschutz (gemäß der
DSGVO).
eppich zur Solarzellen-Dünnschicht in wenigen Sekunden
Entscheidend war dabei nicht die Höhe der Temperatur, sondern die Heizrate: Je rascher die Wurtzit-Stäbchen erhitzt wurden, desto größer wurden die Kristallite. So gelang es Kesterit-Schi ...
lt Chalkopyrit-Solarzellen ohne Kadmium-haltige Pufferschicht
Eine Chalkoyprit-Dünnschichtsolarzelle besteht in der Regel aus fünf Schichten, die jeweils eine ganz bestimmte elektronische Funktion erfüllen. Jede dieser Schichten ist über die ...