High-Speed-Röntgentechnik zeigt Weg zu besseren Katalysatoren
gh-Speed-Röntgentechnik zeigt Weg zu besseren Katalysatoren
Mit der Technik lässt sich die atomare Struktur von Oberflächen deutlich schneller bestimmen als bisher, so dass Live-Aufnahmen von Oberflächenreaktionen wie Katalyse, Korrosion und Wachstumsprozessen mit einer Zeitauflösung von weniger als einer Sekunde möglich werden. "Wir können damit Oberflächenprozesse verfolgen, die sich bislang nicht in Echtzeit beobachten ließen, und die in vielen Bereichen der Materialforschung eine zentrale Rolle spielen", erläutert DESY-Forscher Prof. Andreas Stierle aus dem Team.
Materialforschern fehlt derzeit eine Methode, um die komplette atomare Struktur einer Oberfläche während dynamischer Prozesse in akzeptabler Zeit aufzunehmen. Existierende Verfahren sind entweder zu langsam oder müssen im Hochvakuum stattfinden, was beispielswiese ein Reaktionsgas in der Probenkammer weitgehend ausschließt und damit auch die Live-Beobachtung von Reaktionen der Oberfläche mit Gasen bei annähernd atmosphärischem Druck.
"Unser Ziel war, Oberflächen unter reaktiven, anwendungsnahen Bedingungen live anzuschauen", sagt Stierle. Die Forscher nutzten dazu die hochenergetische Röntgenstrahlung von DESYs Forschungslichtquelle PETRA III. Wenn die Röntgenstrahlen eine feste Oberfläche treffen, werden sie in charakteristischer Weise gebeugt, und das resultierende Beugungsmuster verrät den Wissenschaftlern die atomare Struktur der Oberfläche. Bei konventionellen Röntgenstreuexperimenten mit niedrigerer Energie müssen die Probe und der Detektor gedreht werden, um das gesamte Beugungsmuster sorgfältig Schritt für Schritt abzutasten - eine Prozedur, die oft zehn Stunden oder mehr Messzeit in Anspruch nimmt.
Die hochenergetische Röntgenstrahlung von PETRA III streut dagegen in einen viel kleineren Winkelbereich. Das deutlich kompaktere Beugungsmuster lässt sich mit einem Hochleistungs-Flächendetektor an der High-Energy-Materials-Science-Messstation P07 komplett in einer Aufnahme bestimmen. "Dieser Ansatz beschleunigt die Datenaufnahme in Kombination mit einem leistungsstarken Flächendetektor um das Zehn- bis Hundertfache", betont Stierle. Auf diese Weise können die Forscher die komplette Oberflächenstruktur in weniger als zehn Minuten aufnehmen oder individuelle Strukturmerkmale mit einer zeitlichen Auflösung von weniger als einer Sekunde beobachten. "Außerdem erlaubt uns dies, unbekannte oder unerwartete Strukturen leichter zu identifizieren", berichtet Stierle.
Für ihre Untersuchungen installierte die Gruppe eine Probenkammer, in der ein Reaktionsgasdruck von bis zu einem Bar herrschen darf, um realistischen Reaktionsbedingungen nahezukommen. Ein Bar entspricht in etwa dem normalen Luftdruck. Dank eines integrierten Massenspektrometers lässt sich parallel die Verteilung der Gase in der Probenkammer live verfolgen.
Zum Test ihres neuen Ansatzes beobachteten die Wissenschaftler einen Palladium-Katalysator live bei der Arbeit, wie er giftiges Kohlenmonoxid (CO) in unbedenkliches Kohlendioxid (CO2) umwandelt - ähnlich wie es der Katalysator im Auto macht. Sie montierten dazu einen zwei Millimeter dicken Palladium-Einkristall mit einem Durchmesser von einem Zentimeter in der Probenkammer und leiteten eine Mischung aus Kohlenmonoxid, Sauerstoff und Argon als Trägergas hinein. Per Röntgenblick konnten sie verfolgen, wie das Palladium in dem Moment als Katalysator aktiv wurde, sobald Sauerstoff (O2) in die Kammer floss. "Wir können zusehen, wie der Katalysator vom nicht reaktiven in den reaktiven Zustand umschaltet", berichtet Stierle, der das NanoLab bei DESY leitet und auch als Professor an der Universität Hamburg lehrt.
Die Forscher hoffen, mit der neuen Methode auch die sogenannte aktive Phase des Katalysators zu identifizieren. Seit Jahrzehnten rätseln Wissenschaftler, ob die Umwandlung etwa von Kohlenmonoxid in Kohlendioxid an der blanken Metalloberfläche, an einer Oxidschicht oder an Oxidinseln auf der Oberfläche stattfindet. "Mit der neuen Technik ergibt sich die Chance, die Reaktionszentren live mit atomarer Auflösung zu identifizieren", betont Stierle.
Mit dem Wissen ließen sich wiederum Katalysatoren optimieren. Katalysatoren sind Stoffe, die eine chemische Reaktion beschleunigen, ohne dabei selbst verbraucht zu werden. Die neue Messmethode hat eine breite Vielzahl von Anwendungen in der Materialforschung. Die Wissenschaftler erwarten völlig neue Einblicke in die Kinetik von Oberflächenprozessen, was die atomare Konstruktion neuer Materialien ermöglicht. "Die Kombination aus der hochbrillanten Röntgenquelle, der Probenumgebung, Instrumentierung und dem Detektor ist weltweit einmalig", betont Stierle.
Die neue Röntgentechnik ist gemeinsam von Forschern der Universität Lund, von DESY, der Technischen Universität Göteborg und der Universität Hamburg im Rahmen des Röntgen-Ångström-Clusters entwickelt worden und wurde vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Projekts NanoXcat finanziell unterstützt.
Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.
Originalveröffentlichung
"High-Energy Surface X-Ray Diffraction for Fast Surface Structure Determination?; J. Gustafson, M. Shipilin, C. Zhang, A. Stierle, U. Hejral, U. Ruett, O. Gutowski, P.-A. Carlsson, M. Skoglundh, E. Lundgren; Science, 2014; DOI: 10.1126/science.1246834
Deutsches Elektronen-Synchrotron DESY in der Helmholtz-Gemeinschaft
Notkestraße 85
22607 Hamburg
Telefon: +49 40 8998-0
Telefax: +49 40 8998-3282
Mail:
desyinfo@desy.de
URL:
http://www.desy.de/
(pressrelations) - ntechnik zeigt Weg zu besseren Katalysatoren
Mit der Technik lässt sich die atomare Struktur von Oberflächen deutlich schneller bestimmen als bisher, so dass Live-Aufnahmen von Oberflächenreaktionen wie Katalyse, Korrosion und Wachstumsprozessen mit einer Zeitauflösung von weniger als einer Sekunde möglich werden. "Wir können damit Oberflächenprozesse verfolgen, die sich bislang nicht in Echtzeit beobachten ließen, und die in vielen Bereichen der Materialforschung eine zentrale Rolle spielen", erläutert DESY-Forscher Prof. Andreas Stierle aus dem Team.
Materialforschern fehlt derzeit eine Methode, um die komplette atomare Struktur einer Oberfläche während dynamischer Prozesse in akzeptabler Zeit aufzunehmen. Existierende Verfahren sind entweder zu langsam oder müssen im Hochvakuum stattfinden, was beispielswiese ein Reaktionsgas in der Probenkammer weitgehend ausschließt und damit auch die Live-Beobachtung von Reaktionen der Oberfläche mit Gasen bei annähernd atmosphärischem Druck.
"Unser Ziel war, Oberflächen unter reaktiven, anwendungsnahen Bedingungen live anzuschauen", sagt Stierle. Die Forscher nutzten dazu die hochenergetische Röntgenstrahlung von DESYs Forschungslichtquelle PETRA III. Wenn die Röntgenstrahlen eine feste Oberfläche treffen, werden sie in charakteristischer Weise gebeugt, und das resultierende Beugungsmuster verrät den Wissenschaftlern die atomare Struktur der Oberfläche. Bei konventionellen Röntgenstreuexperimenten mit niedrigerer Energie müssen die Probe und der Detektor gedreht werden, um das gesamte Beugungsmuster sorgfältig Schritt für Schritt abzutasten - eine Prozedur, die oft zehn Stunden oder mehr Messzeit in Anspruch nimmt.
Die hochenergetische Röntgenstrahlung von PETRA III streut dagegen in einen viel kleineren Winkelbereich. Das deutlich kompaktere Beugungsmuster lässt sich mit einem Hochleistungs-Flächendetektor an der High-Energy-Materials-Science-Messstation P07 komplett in einer Aufnahme bestimmen. "Dieser Ansatz beschleunigt die Datenaufnahme in Kombination mit einem leistungsstarken Flächendetektor um das Zehn- bis Hundertfache", betont Stierle. Auf diese Weise können die Forscher die komplette Oberflächenstruktur in weniger als zehn Minuten aufnehmen oder individuelle Strukturmerkmale mit einer zeitlichen Auflösung von weniger als einer Sekunde beobachten. "Außerdem erlaubt uns dies, unbekannte oder unerwartete Strukturen leichter zu identifizieren", berichtet Stierle.
Für ihre Untersuchungen installierte die Gruppe eine Probenkammer, in der ein Reaktionsgasdruck von bis zu einem Bar herrschen darf, um realistischen Reaktionsbedingungen nahezukommen. Ein Bar entspricht in etwa dem normalen Luftdruck. Dank eines integrierten Massenspektrometers lässt sich parallel die Verteilung der Gase in der Probenkammer live verfolgen.
Zum Test ihres neuen Ansatzes beobachteten die Wissenschaftler einen Palladium-Katalysator live bei der Arbeit, wie er giftiges Kohlenmonoxid (CO) in unbedenkliches Kohlendioxid (CO2) umwandelt - ähnlich wie es der Katalysator im Auto macht. Sie montierten dazu einen zwei Millimeter dicken Palladium-Einkristall mit einem Durchmesser von einem Zentimeter in der Probenkammer und leiteten eine Mischung aus Kohlenmonoxid, Sauerstoff und Argon als Trägergas hinein. Per Röntgenblick konnten sie verfolgen, wie das Palladium in dem Moment als Katalysator aktiv wurde, sobald Sauerstoff (O2) in die Kammer floss. "Wir können zusehen, wie der Katalysator vom nicht reaktiven in den reaktiven Zustand umschaltet", berichtet Stierle, der das NanoLab bei DESY leitet und auch als Professor an der Universität Hamburg lehrt.
Die Forscher hoffen, mit der neuen Methode auch die sogenannte aktive Phase des Katalysators zu identifizieren. Seit Jahrzehnten rätseln Wissenschaftler, ob die Umwandlung etwa von Kohlenmonoxid in Kohlendioxid an der blanken Metalloberfläche, an einer Oxidschicht oder an Oxidinseln auf der Oberfläche stattfindet. "Mit der neuen Technik ergibt sich die Chance, die Reaktionszentren live mit atomarer Auflösung zu identifizieren", betont Stierle.
Mit dem Wissen ließen sich wiederum Katalysatoren optimieren. Katalysatoren sind Stoffe, die eine chemische Reaktion beschleunigen, ohne dabei selbst verbraucht zu werden. Die neue Messmethode hat eine breite Vielzahl von Anwendungen in der Materialforschung. Die Wissenschaftler erwarten völlig neue Einblicke in die Kinetik von Oberflächenprozessen, was die atomare Konstruktion neuer Materialien ermöglicht. "Die Kombination aus der hochbrillanten Röntgenquelle, der Probenumgebung, Instrumentierung und dem Detektor ist weltweit einmalig", betont Stierle.
Die neue Röntgentechnik ist gemeinsam von Forschern der Universität Lund, von DESY, der Technischen Universität Göteborg und der Universität Hamburg im Rahmen des Röntgen-Ångström-Clusters entwickelt worden und wurde vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Projekts NanoXcat finanziell unterstützt.
Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.
Originalveröffentlichung
"High-Energy Surface X-Ray Diffraction for Fast Surface Structure Determination?; J. Gustafson, M. Shipilin, C. Zhang, A. Stierle, U. Hejral, U. Ruett, O. Gutowski, P.-A. Carlsson, M. Skoglundh, E. Lundgren; Science, 2014; DOI: 10.1126/science.1246834
Deutsches Elektronen-Synchrotron DESY in der Helmholtz-Gemeinschaft
Notkestraße 85
22607 Hamburg
Telefon: +49 40 8998-0
Telefax: +49 40 8998-3282
Mail: desyinfo(at)desy.de
URL: http://www.desy.de/
Unternehmensinformation / Kurzprofil:PresseKontakt / Agentur:Deutsches Elektronen-Synchrotron DESY in der Helmholtz-Gemeinschaft
Notkestraße 85
22607 Hamburg
Telefon: +49 40 8998-0
Telefax: +49 40 8998-3282
Mail: desyinfo(at)desy.de
URL: http://www.desy.de/
Bereitgestellt von Benutzer: pressrelations
Datum: 19.12.2014 - 10:15 Uhr
Sprache: Deutsch
News-ID 1153056
Anzahl Zeichen: 12857
pressrelations.de – ihr Partner für die Veröffentlichung von Pressemitteilungen und Presseterminen, Medienbeobachtung und MedienresonanzanalysenDiese Pressemitteilung wurde bisher
0 mal aufgerufen.
Die Pressemitteilung mit dem Titel:
"
High-Speed-Röntgentechnik zeigt Weg zu besseren Katalysatoren"
steht unter der journalistisch-redaktionellen Verantwortung von
Deutsches Elektronen-Synchrotron DESY in der Helmholtz-Gemeinschaft (
Nachricht senden)
Beachten Sie bitte die weiteren Informationen zum
Haftungsauschluß (gemäß
TMG - TeleMedianGesetz) und dem
Datenschutz (gemäß der
DSGVO).
sseln Serotonin-Rezeptor bei Raumtemperatur
Serotonin ist ein wichtiger Botenstoff des Nervensystems und an der Regulierung zahlreicher Körperfunktionen beteiligt, darunter Blutdruck, Verdauung und Augeninnendruck, aber auch Stimmung, Appetit und ...
n schnellsten Wasserkocher der Welt
Das theoretische Konzept eröffnet interessante neue Experimentiermöglichkeiten mit erhitzten chemisch oder biologisch relevanten Proben, wie seine Erfinder im aktuellen Heft des Fachblatts "Angewandte Che ...
etektor der Welt eröffnet einen neuen Zweig der Astronomie
"Dies ist der erste Hinweis auf sehr hochenergetische Neutrinos, die von jenseits unseres Sonnensystems kommen", betont IceCube-Projektleiter Prof. Francis Halzen von der Univer ...