Zebrafische besitzen die ungewöhnliche Fähigkeit, neue Nervenzellen zu bilden und dadurch abgestorbene oder beschädigte Nervenzellen zu ersetzen. Bayreuther Forschern ist das jetzt in vitro möglich.
(firmenpresse) - Einem Forschungsteam um Prof. Dr. Stefan Schuster am Lehrstuhl für Tierphysiologie der Universität Bayreuth ist es gelungen, großflächige Kulturen aus Zebrafisch-Nervenzellen anzulegen, die ein genaues Studium der Regenerations-Prozesse erlauben. Damit ergeben sich vielversprechende neue Möglichkeiten für die neurobiologische und biomedizinische Forschung.
Beschädigte menschliche Nervenzellen in möglichst großem Umfang reparieren oder ersetzen zu können, ist ein Ziel, auf das die Medizin weltweit hinarbeitet. Dabei sind Zebrafische von besonderem Interesse. Denn sie besitzen die ungewöhnliche Fähigkeit, neue Nervenzellen zu bilden und dadurch abgestorbene oder beschädigte Nervenzellen zu ersetzen. Es wäre für die neurologische Forschung eine wertvolle Unterstützung, wenn sie diese Prozesse nicht nur an lebenden Zebrafischen beobachten, sondern auch im Reagenzglas reproduzieren und untersuchen könnte. Doch die bisherigen Verfahren, mit denen Nervenzellkulturen von Zebrafischen künstlich angelegt wurden, haben sich als sehr arbeits- und zeitaufwändig erwiesen. Zudem waren die Bemühungen, solche Zellkulturen zu standardisieren und dadurch die Versuchsbedingungen zu vereinheitlichen, bisher wenig erfolgreich. Selbst die fluoreszenzaktivierte Zellsortierung (FACS), eine in der Zellbiologie verbreitete Methode, führt nicht zu den gewünschten Ergebnissen.
In "Scientific Reports": Eine neuartige Anwendung eines bewährten Verfahrens
Mithilfe eines bewährten Verfahrens ist es einem Forschungsteam am Lehrstuhl für Tierphysiologie der Universität Bayreuth aber jetzt gelungen, großflächige Kulturen aus Zebrafisch-Nervenzellen anzulegen, die ein genaues Studium der Neubildung und Regeneration solcher Zellen erlauben. Die Wissenschaftler um Prof. Dr. Stefan Schuster haben die magnetisch aktivierte Zellsortierung ? die unter dem rechtlich geschützten Namen "MACS" (Magnetic-Activated Cell Sorting) bekannt ist ? erstmals auf Nervenzellen von Zebrafischen angewendet. Über ihre vielversprechenden Ergebnisse berichten sie im Wissenschaftsmagazin "Scientific Reports".
Magnetische Partikel ermöglichen das Aussortieren determinierter Stammzellen
Aus sterilisierten Zebrafisch-Embryonen wurde zunächst eine gemischte Zellkultur eingerichtet. Diese Zellkultur enthielt also sehr verschiedene Arten von Zellen, darunter auch sogenannte "neuronale Vorläuferzellen". Hierbei handelt es sich um unreife Nervenzellen, die aus neuronalen Stammzellen hervorgehen. Sie sind ? im Unterschied zu diesen pluripotenten Stammzellen ? bereits für einen bestimmten Funktionsbereich, beispielsweise das Gehirn oder die Wirbelsäule, vorgeprägt und werden daher auch als "determinierte Stammzellen" bezeichnet.
Charakteristisch für die neuronalen Vorläuferzellen ist ein Molekül mit dem Namen "PSA-NCAM". Dieses Molekül konnten die Bayreuther Wissenschaftler daher als geeigneten Ansatzpunkt für das MACS-Verfahren identifizieren. In die gemischte Zellkultur haben sie winzige magnetische Partikel (MicroBeads) eingebracht, die zuvor mit speziellen Antikörpern beschichtet worden waren. Diese Antikörper ?erkannten? die in der Zellkultur enthaltenen PSA-NCAM-Moleküle und gingen mit ihnen eine chemische Verbindung ein. Somit waren die magnetischen Partikel an die neuronalen Vorläuferzellen gleichsam angekettet. Nun wurde die Zellkultur durch einen säulenförmigen Behälter gespült, der von einem starken Magnetfeld umgeben war. Dieses Magnetfeld bewirkte, dass die neuronalen Vorläuferzellen ? und nur sie ? im Behälter ?festsaßen?, während alle anderen Zellen ihn wieder verließen. Auf der Grundlage der aussortierten Vorläuferzellen wurden nun großflächige Zellkulturen angelegt, aus denen sich im Labor voll funktionstüchtige Nervenzellen entwickeln können.
Effizient und kostengünstig ? ein vielversprechender Weg für die biomedizinische Forschung
"Die von uns konzipierte und erfolgreich getestete Anwendung des MACS-Verfahrens auf Vorläuferzellen von Zebrafischen hat sich als sehr effizient und zugleich als kostengünstig erwiesen", resümiert Georg Welzel, der die Experimente durchgeführt hat. "Zeitaufwändige manuelle Arbeiten sind hauptsächlich nur bei der Gewinnung der Zebrafisch-Embryonen erforderlich, aus denen zunächst die gemischte Zellkultur gebildet wird. Das anschließende Aussortieren der neuronalen Vorläuferzellen ist ein weitgehend automatisiertes Verfahren."
Prof. Schuster ist daher zuversichtlich, dass das Verfahren künftig weitere Verbreitung finden wird: "Damit ergeben sich vielversprechende Möglichkeiten für die neurobiologische und biomedizinische Forschung, die hoffentlich schon bald und besser als heute in der Lage sein wird, menschliche Nervenzellen wiederherzustellen oder durch neues Gewebe zu ersetzen." Ein weiterer Schritt könne beispielsweise darin bestehen, das MACS-Verfahren auf die neuronalen Vorläuferzellen anzuwenden und aus ihnen genau diejenigen Zellen zu isolieren, die für Hirnfunktionen vorgeprägt sind. "Auf diese Weise könnten spezialisierte Zellkulturen eingerichtet werden, die beispielsweise für die Forschungen zur Parkinskon- oder Alzheimer-Erkrankung wertvolle Unterstützung leisten", meint der Bayreuther Tierphysiologe.
Forschungsförderung
Die Deutsche Forschungsgemeinschaft hat die in "Scientific Reports" veröffentlichten Forschungsarbeiten im Rahmen eines Reinhart Koselleck-Projekts unterstützt. An einigen Entwicklungsarbeiten war auch die Friedrich Baur BioMed Center gGmbH beteiligt, die von Daniel Seitz und Prof. Dr. Stefan Schuster geleitet und von der Friedrich Baur Stiftung in Burgkunstadt gefördert wird.
Veröffentlichung
Georg Welzel, Daniel Seitz, and Stefan Schuster,
Magnetic-activated cell sorting (MACS) can be used as a large-scale method for establishing zebrafish neuronal cell cultures,
Scientific Reports 5 : 7959, DOI: 10.1038/srep07959
Ansprechpartner
Prof. Dr. Stefan Schuster
Lehrstuhl für Tierphysiologie
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49-(0)921 / 55-2470 und -2471
E-Mail: stefan.schuster(at)uni-bayreuth.de
Kurzporträt der Universität Bayreuth
Die Universität Bayreuth ist eine junge, forschungsorientierte Campus-Universität. Gründungsauftrag der 1975 eröffneten Universität ist die Förderung von interdisziplinärer Forschung und Lehre sowie die Entwicklung von Profil bildenden und Fächer übergreifenden Schwerpunkten. Die Forschungsprogramme und Studienangebote decken die Natur- und Ingenieurwissenschaften, die Rechts- und Wirtschaftswissenschaften sowie die Sprach-, Literatur und Kulturwissenschaften ab und werden beständig weiterentwickelt.
Gute Betreuungsverhältnisse, hohe Leistungsstandards, Fächer übergreifende Kooperationen und wissenschaftliche Exzellenz führen regelmäßig zu Spitzenplatzierungen in Rankings. Die Universität Bayreuth belegt 2014 im weltweiten Times Higher Education (THE)-Ranking ?100 under 50? als eine von insgesamt sechs vertretenen deutschen Hochschulen eine Top-Platzierung.
Seit Jahren nehmen die Afrikastudien der Universität Bayreuth eine internationale Spitzenposition ein; die Bayreuther Internationale Graduiertenschule für Afrikastudien (BIGSAS) ist Teil der Exzellenzinitiative des Bundes und der Länder. Die Hochdruck- und Hochtemperaturforschung innerhalb des Bayerischen Geoinstituts genießt ebenfalls ein weltweit hohes Renommee. Die Polymerforschung ist Spitzenreiter im Förderranking der Deutschen Forschungsgemeinschaft (DFG). Die Universität Bayreuth verfügt über ein dichtes Netz strategisch ausgewählter, internationaler Hochschulpartnerschaften.
Derzeit sind an der Universität Bayreuth rund 13.000 Studierende in 135 verschiedenen Studiengängen an sechs Fakultäten immatrikuliert. Mit ca. 1.200 wissenschaftlichen Beschäftigten, davon 224 Professorinnen und Professoren, und rund 900 nichtwissenschaftlichen Mitarbeiterinnen und Mitarbeitern ist die Universität Bayreuth der größte Arbeitgeber der Region.
Weissdornweg 24, 85757 Karlsfeld